Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Talip Kaya Erdem, ${ }^{\text {a }}$, Sehriman Atalay, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Musa Özil ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: tkerdem@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.057$
$w R$ factor $=0.159$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(3-Methoxyphenylsulfanyl)phthalonitrile

The title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$, is composed of a 3methoxyphenylsulfanyl moiety connected via the S atom to a phthalonitrile group. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

Substituted phthalonitriles have been used as starting materials for phthalocyanines (McKeown, 1998). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread applications in catalysis, in optical recording, in photoconductive materials, in photodynamic therapy and as chemical sensors (Leznoff \& Lever, 19891996).

(I)

The title compound, (I), contains two benzene rings (A : C3C8; B: C9-C14), as shown in Fig. 1. The dihedral angles between rings A and B is $69.5(1)^{\circ} . \mathrm{S} 1$ and O 1 are displaced, on the same side, from the plane of ring B by 0.177 (1) and 0.018 (2) \AA, respectively.

The bond lengths and angles for (I) are listed in Table 1. The triple-bond distances, 1.134 (4) and 1.144 (5) \AA, for $\mathrm{C} 1 \equiv \mathrm{~N} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2$, respectively, agree with literature values (Atalay et al., 2003, 2004; Du et al., 2001). The geometry around the S atom also shows good agreement with literature values (Petek et al., 2004).

Perspective view of the molecular structure of (I), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 26 July 2004 Accepted 28 July 2004 Online 7 August 2004

Figure 2
The molecular packing in (I), viewed along the a axis, showing the hydrogen-bonding interactions as dashed lines.

The crystal packing, shown in Fig. 2, is stabilized by two intermolecular hydrogen bonds: $\mathrm{C} 10 \cdots \mathrm{~N} 1^{\mathrm{i}}=3.534$ (4) \AA and $\mathrm{C} 5 \cdots \mathrm{O} 1^{\mathrm{ii}}=3.191$ (3) \AA; details and symmetry codes are given in Table 2.

Experimental

3-Methoxybenzenethiol ($0.89 \mathrm{~g}, 6.35 \mathrm{mmol}$) and 4-nitrophthalonitrile $(1.00 \mathrm{~g}, 5.78 \mathrm{mmol})$ were dissolved in dry dimethylformamide (40 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate $(1.0 \mathrm{~g}, 7.25 \mathrm{mmol})$ was added in portions $(10 \times 1 \mathrm{mmol})$ every 10 min . The reaction mixture was stirred for 48 h at room temperature and then poured into ice-water $(100 \mathrm{~g})$. The product was filtered off and washed with NaOH solution and water $(10 \% w / w)$ until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield $1.54 \mathrm{~g}, 81.17 \%$). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 370 K); elemental analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$: C 67.65 , H $3.78, \mathrm{~N}$ 10.52%; found: C $67.52, \mathrm{H} 3.82, \mathrm{~N} 10.46 \% .^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.84(s$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04-7.62$ p.p.m. $(\mathrm{m}, 7 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 55.52$ $\left(\mathrm{OCH}_{3}\right), 111.30,115.06,115.41,116.28,116.34,120.27,127.12,129.30$, 129.99, 130.17, 131.29, 133.28, 148.18, 160.82 p.p.m.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS} \\
& M_{r}=266.31 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.5982(9) \AA \\
& b=8.5208(11) \AA \\
& c=11.6213(14) \AA \\
& \alpha=101.059(10)^{\circ} \\
& \beta=96.146(9)^{\circ} \\
& \gamma=113.501(9)^{\circ} \\
& V=662.94(14) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.334 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 13254 \\
& \quad \text { reflections } \\
& \theta=2.7-29.0^{\circ} \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, pale yellow } \\
& 0.61 \times 0.34 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by integration (X-SHAPE;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.898, T_{\text {max }}=0.978$
8721 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.159$
$S=1.00$
2591 reflections
172 parameters

2591 independent reflections
1714 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

H -atom parameters constrained
H-atom parameters constrain
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.099 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

C15-O1	$1.426(3)$	S1-C6	$1.757(3)$
O1-C11	$1.358(3)$	$\mathrm{S} 1-\mathrm{C} 9$	$1.781(3)$
N1-C1	$1.134(4)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.144(5)$
$\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 15$	$118.1(2)$	$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 9$	$104.59(13)$
$\mathrm{C} 15-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 10$	$7.2(4)$	$\mathrm{C} 15-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$-175.4(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C10-H10 $\cdots \mathrm{N} 1^{\mathrm{i}}$	0.93	2.62	$3.534(4)$	167
C5-H5 $\cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.44	$3.191(3)$	138

Symmetry codes: (i) $-x,-1-y,-z$; (ii) $1-x,-y, 1-z$.
H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3} groups.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: $\operatorname{SHELXS97}$ (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o111101112.

Atalay, Ş., Çoruh, U., Akdemir, N. \& Ağar, E. (2004). Acta Cryst. E60, o303o305.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Du, M., Bu, X. H., Liu, H. \& Leng, X. B. (2001). Acta Cryst. C57, 201-202.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 \& 4. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Petek, H., Akdemir, N., Özil, M., Ağar, E. (2004). Acta Cryst. E60, o621-o622. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-SHAPE, X-AREA (Version 1.118) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

